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• Community Analysis 



This lecture’s  slides adapted from :

R. Zafarani, M. A. Abbasi, and H. Liu, Social Media Mining: An 
Introduction, Cambridge University Press, 2014. 



Main Characteristics 

• Participation
– social media encourages contributions and feedback from everyone who is 

interested. It blurs the line between media and audience.
• Openness

– most social media services are open to feedback and participation. They 
encourage voting, comments and the sharing of information. There are 
rarely any barriers to accessing and making use of content – password-
protected content is frowned on.

• Conversation
– whereas traditional media is about “broadcast” (content transmitted or 

distributed to an audience) social media is better seen as a two-way 
conversation.

• Community
– social media allows communities to form quickly and communicate 

effectively. Communities share common interests, such as a love of 
photography, a political issue or a favorite TV show.

• Connectedness
– Most kinds of social media thrive on their connectedness, making use of 

links to other sites, resources and people.



Social Media Mining is the process of 
representing, analyzing, and extracting 
meaningful patterns from social media 
data



Social Media Mining Challenges

1. Big Data Paradox
1. Social media data is big, yet not evenly distributed. 
2. Often little data is available for an individual

2. Obtaining Sufficient Samples
1. Are our samples reliable representatives of  the full data?

3. Noise Removal Fallacy
1. Too much removal makes data more sparse
2. Noise definition is relative and complicated and is task-dependent

4. Evaluation Dilemma
1. When there is no ground truth, how can you evaluate?



Social Community

A group of individuals with common economic, 
social, or political interests or characteristics, often 
living in relative proximity.

[real-world] community 



Why analyze communities?

Analyzing communities helps better understand 
users
– Users form groups based on their interests

Groups provide a clear global view 
of user interactions

• E.g., find polarization

Some behaviors are only observable in a 
group setting and not on an individual level

– Some republican can agree with some 
democrats, but their parties can disagree



Social Media Communities

• Formation:
– When like-minded users on social media form a link and start interacting with 

each other 

• More Formal Formation:
1. A set of at least two nodes sharing some interest, and
2. Interactions with respect to that interest.

• Social Media Communities
– Explicit (emic): formed by user subscriptions
– Implicit (etic): implicitly formed by social interactions 

• Example: individuals calling Canada from the United States
• Phone operator considers them one community for promotional offers

• Other community names:  group, cluster, cohesive subgroup, or module



Examples of Explicit Social Media Communities

Facebook has groups and communities. Users can 
– post messages and images, 
– can comment on other messages, 
– can like posts, and 
– can view activities of other users

In Google+, Circles represent communities

In Twitter, communities form as lists. 
– Users join lists to receive information in 

the form of tweets

LinkedIn provides Groups and Associations.
– Users can join professional groups where they can 

post and share information related to the group



Finding Implicit Communities: An Example

A simple graph in which three
implicit communities are found, 
enclosed by the dashed circles



Overlapping vs. Disjoint Communities

Overlapping Communities Disjoint Communities



Implicit communities in other domains

Protein-protein interaction networks
– Communities are likely to group proteins 

having the same specific function within the 
cell

World Wide Web 
– Communities may correspond to groups of pages dealing with the same or 

related topics

Metabolic networks 
– Communities may be related to functional modules such as cycles and 

pathways

Food webs 
– Communities may identify compartments



Real-world Implicit Communities

Collaboration network 
between scientists 
working at the         
Santa Fe Institute. 

The colors indicate high 
level communities and 
correspond to research 
divisions of the institute



What is Community Analysis?

• Community detection
– Discovering implicit communities

• Community evolution
– Studying temporal evolution of communities

• Community evaluation
– Evaluating Detected Communities



Community Detection



What is community detection?

• The process of finding clusters of nodes 
(‘‘communities’’) 
– With Strong internal connections and 
– Weak connections between different communities

• Ideal decomposition of a large graph
– Completely disjoint communities 
– There are no interactions between different communities.

• In practice, 
– find community partitions that are maximally decoupled.



Why Detecting Communities is Important?

• The club members split into two groups (gray and white)
• Disagreement between the administrator of the club (node 34) and the 

club’s instructor (node 1), 
• The members of one group left to start their own club

The same communities can be found 
using community detection

Zachary's 
karate club

Interactions between 34 
members of a karate club 
for over two years



Why Community Detection?

Network Summarization
– A community can be 

considered as a 
summary of the whole 
network

– Easier to visualize  and 
understand

Preserve Privacy
– [Sometimes] a 

community can reveal 
some properties 
without releasing the 
individuals’ privacy 
information.



Community Detection vs. Clustering

Clustering
• Data is often non-linked (matrix rows)
• Clustering works on the distance or similarity matrix, e.g., 
!-means.

• If you use !-means with adjacency matrix rows, you are 
only considering the ego-centric network

Community detection
• Data is linked (a graph)
• Network data tends to be “discrete”, leading to algorithms 

using the graph property directly 
– !-clique, quasi-clique, or edge-betweenness 



Community Detection Algorithms

Group Users 
based on Group 

attributes

Group Users 
based on 
Member

attributes



Member-Based 
Community Detection



Member-Based Community Detection

• Look at node characteristics; and
• Identify nodes with similar characteristics and consider them a 

community

Node Characteristics

A. Degree
– Nodes with same (or similar) degrees are in one community
– Example: cliques

B. Reachability 
– Nodes that are close (small shortest paths) are in one community
– Example: !-cliques, !-clubs, and !-clans

C. Similarity 
– Similar nodes are in the same community



A. Node Degree

Most common subgraph searched for:
• Clique: a maximum complete 

subgraph in which all nodes inside 
the subgraph adjacent to each other

Find communities by searching for 
1. The maximum clique:       the 

one with the largest number of 
vertices, or

2. All maximal cliques: cliques 
that are not subgraphs of a 
larger clique; i.e., cannot be 
further expanded

Both problems are NP-hard

To overcome this, we can
I. Brute Force
II. Relax cliques
III. Use cliques as the core 

for larger communities



I. Brute-Force Method

Can find all the 
maximal cliques in 
the graph

For each vertex 
!!, we find the 
maximal clique 
that contains 
node !!

Impractical for large networks: 
• For a complete graph of only 100 nodes, the algorithm 

will generate at least 2!! − 1 different cliques starting 
from any node in the graph



Enhancing the Brute-Force Performance 

[Systematic] Pruning can help:

• When searching for cliques of size ! or larger

• If the clique is found, each node should have a degree equal 
to or more than ! − 1

• We can first prune all nodes (and edges connected to them) 
with degrees less than ! − 1
– More nodes will have degrees less than ! − 1
– Prune them recursively

• For large !, many nodes are pruned as social media 
networks follow a power-law degree distribution



Maximum Clique: Pruning…

Example. to find a clique ≥ 4, 
remove all nodes with degree ≤
(4 − 1) − 1 = 2
– Remove nodes 2 and 9
– Remove nodes 1 and 3
– Remove node 4

Even with pruning, cliques are less desirable
– Cliques are rare
– A clique of 1000 nodes, has 999x1000/2 edges
– A single edge removal destroys the clique
– That is less than 0.0002% of the edges!



II. Relaxing Cliques

• !-plex: a set of vertices " in which we have

• #! is the degree of $ in the induced subgraph
– Number of nodes from ! that are connected to "

• Clique of size % is a 1-plex
• Finding the maximum %-plex: NP-hard

– In practice, relatively easier due to smaller search space.

Maximal !-plexes



More Cliques Relaxing…

• !-core: a maximal 
connected subgraph in 
which all vertices have 
degree at least !
– Difference with !-plex?

• !-shell: nodes that are 
part of the "-core, but are 
not part of the   (" + 1)-
core.

Questions
• 0-core? 
• 0-shell? 
• 1-core?
• !-cores of the complete graph?

A Clique that wants to relax

A 2-plex or a 2-core?



III. Using Cliques as a seed of a Community

Clique Percolation Method (CPM)
– Uses cliques as seeds to find larger communities
– CPM finds overlapping communities

• Input
– A parameter !, and a network 

• Procedure
– Find out all cliques of size ! in the given network
– Construct a clique graph. 

• Two cliques are adjacent if they share ! − 1 nodes
– Each connected components in the clique graph form a 

community



Clique Percolation Method: Example

Cliques of size 3:
{"!, "", "#}, {"#, "$, "%},
"$, "%, "& , {"$, "%, "'}, 
{"$, "&, "'}, {"%, "&, "'}, 
{"&, "', "(}, {"(, "), "!*}

Communities: 
{"!, "", "#}, 
{"(, "), "!*},

{"#, "$, "%, "&, "', "(}



B. Node Reachability

The two extremes
Nodes are assumed to be in the 
same community 

1. If there is a path between 
them (regardless of the 
distance) or

2. They are so close as to be 
immediate neighbors.

How? Find using BFS/DFS

How? Finding Cliques

Challenge: most nodes are in one 
community (giant component)

Challenge: Cliques are challenging to find 
and are rarely observed

Solution: find communities that are in between cliques and 
connected components in terms of connectivity and have small 

shortest paths between their nodes



Special Subgraphs

1. #-Clique: a maximal subgraph in which the largest shortest 
path distance between any nodes is less than or equal to #

2. #-Club: follows the same definition as a #-clique
– Additional Constraint: nodes on the shortest paths should be part of 

the subgraph (i.e., diameter)

3. #-Clan: a #-clique where for all shortest paths within the 
subgraph the distance is equal or less than #. 
– All !-clans are !-cliques, but not vice versa.



More Special Subgraphs!

• !-truss: the largest subgraph where all edges belong 
to " − 2 triangles

• What is the relationship between a !-core and !-
truss?



C. Node Similarity

• Similar (or most similar) nodes are assumed to be in the same community.
– A classical clustering algorithm (e.g., !-means) is applied to node similarities to find 

communities.

• Node similarity can be defined 
– Using the similarity of node neighborhoods (Structural Equivalence) 
– Similarity of social circles (Regular Equivalence

Structural equivalence: two nodes are structurally equivalent iff. they are 
connecting to the same set of actors

Nodes 1 and 3 are structurally 
equivalent,  
So are nodes 5 and 7. 



Node Similarity (Structural Equivalence)

Jaccard Similarity

Cosine similarity



Group-Based
Community Detection



Group-Based Community Detection

Group-based community detection: finding communities 
that have certain group properties

Group Properties:
I. Balanced: Spectral clustering
II. Robust: !-connected graphs
III. Modular: Modularity Maximization
IV. Dense: Quasi-cliques
V. Hierarchical: Hierarchical clustering



I. Balanced Communities

• Community detection can be thought of graph clustering

• Graph clustering: we cut the graph into several partitions and assume these 
partitions represent communities

• Cut: partitioning (cut) of the graph into two (or more) sets (cutsets) 
– The size of the cut is the number of edges that are being cut

• Minimum cut (min-cut) problem: find a graph partition such that the number 
of edges between the two sets is minimized

Min-cuts can be computed 
efficiently using the max-

flow min-cut theorem

Min-cut often returns an imbalanced partition, with one set being a singleton

Min-cut



Ratio Cut and Normalized Cut

• To mitigate the min-cut problem we can change the 
objective function to consider community size

• !"! = $ − "! is the complement cut set
• &'(("! , !"!) is the size of the cut
• ,-. "! = ∑"∈$! 0"



Ratio Cut & Normalized Cut: Example

For Cut A

For Cut B

Both ratio cut and normalized cut prefer a balanced partition

A

B



Spectral Clustering

Reformulating ratio cut (or normalized cut) in matrix format

• Let !!" = 1, when node $ is member of community %; 0, otherwise

• Let & = '$()('!, '", ⋯, '#) be the diagonal degree matrix

• The $th entry on the diagonal of !#.! is the number of edges that are 
inside community $. 

• The $th element on the diagonal of !#&! is the number of edges that are 
connected to members of community $. 

• The $th element on the diagonal of !#(& − .)! is the number of edges in 
the cut that separates community $ from other nodes. 

The !th diagonal element of 
"!($ − &)" is equivalent to cut((! , *(!)



Spectral Clustering

So ratio cut is 



Spectral Clustering

Both ratio/normalized cut can be reformulated as

• Spectral relaxation:

! = #$%&(#!, #", ⋯, ##) is a diagonal degree matrix

Optimal Solution
!" is the top eigenvectors with the smallest eigenvalues



Recovering Integer Membership Values

• Because we performed spectral relaxation, the 
matrix obtained is not integer valued

• To recover ! from "! we can run #-means on "!



Spectral Clustering: Example

! = #$%&(2, 2, 4, 4, 4, 4, 4, 3, 1)

2 Eigenvectors
i.e., we want

2 communities

Two communities: 
{/!, /", /#}

{/$, /%, /&, /', /(, /)}

!-
m

ea
ns

, !
=
#



II. Robust Communities

• The goal is find subgraphs robust enough such that 
removing some edges or vertices does not disconnect the 
subgraph

• !-vertex connected (!-connected) graph:
– ! is the minimum number of nodes that must be removed to 

disconnect the graph
• !-edge connected: at least " edges must be removed to 

disconnect the graph

• Examples:
– Complete graph of size ": unique "-connected graph 
– A cycle: 2-connected graph



III. Modular Communities

Consider a graph !(#, %), where the degrees are known 
beforehand however edges are not
– Consider two vertices !! and !" with degrees "! and "". 

What is an expected number of edges between '! and '"?
• For any edge going out of '! randomly the probability of 

this edge getting connected to vertex '" is



Modularity and Modularity Maximization

• Given a degree distribution, we know the expected 
number of edges between any pairs of vertices 

• We assume that real-world networks should be far 
from random. Therefore, the more distant they are 
from this randomly generated network, the more 
structural they are.

• Modularity defines this distance and modularity 
maximization tries to maximize this distance



Normalized Modularity

Consider a partitioning of the data ! = (!1, !2, !3, … , !$)

For partition !!, this distance can 
be defined as

This distance can be generalized for 
a partitioning !

The normalized version of this 
distance is defined as Modularity



Modularity Maximization

Modularity matrix

! ∈ ℝ!×# is the degree vector for all nodes

Reformulation of the modularity

• ! ∈ ℝ!×# is the indicator (partition membership) function:
Ø !$% = 1 iff. &$ ∈ '%

• Similar to Spectral clustering, 
• We relax ! to be orthogonal, i.e., matrix (!
• The optimal solution for (! is the top ) eigenvectors of *. 
• To recover the original !, we can run )-means on (!

• Difference: in Modularity, the top ) eigenvalues have to be positive!



Modularity Maximization: Example

Modularity Matrix

!-means

Two 
Communities:

{1, 2, 3, 4}
and

{5, 6, 7, 8, 9}

2 eigenvectors



Making Modularity Optimization Faster

• The matrix method discussed is slow and 
does not scale to millions of nodes (and 
billions of edges)

• We can perform greedy optimization of 
modularity to speed-up the process

• Louvain Method 
– A greedy modularity optimization method for 

community detection
• Invented when all authors affiliated with      

Université catholique de Louvain (UCL)



Louvain Method

The algorithm has multiple passes
– Each pass has two phases

1. Modularity Optimization
2. Community Aggregation

Image from 
Blondel, Vincent D., Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefebvre. "Fast unfolding of communities in large networks." Journal 
of statistical mechanics: theory and experiment 2008, no. 10 (2008): P10008.



Louvain Method

Start with a weighted network where all nodes are in their 
own communities (i.e., n communities)

First Phase:
• For each node !!,

– For all neighbors !! ∈ #(!"): 
• compute the modularity gain if "! is removed from its community and 

placed in the community of "". 
– Find the community with the maximum modularity gain
– If the maximum gain is positive, remove !" from its community, and 

place it in that community
– If no positive gain, do not change communities

• Repeat until no node changes its community



Important Points about Phase I

• A point can be considered multiple times

• A Local Minima of modularity maximization is 
achieved in phase I

• Phase I is order dependent
– The modularity achieved is more or less stable and is less 

dependent on the initial order
– The computation time depends on the initial order.



Louvain Method

Second Phase:
– Build a new network

• Nodes are communities
• Edges are the edges between nodes in the corresponding 

communities (weights are sum of the weights)
• Self-loops represent edges within the community

• The algorithm creates hierarchies of communities
• It usually ends in less than 10 passes
• It is seems to be an O(# log #) algorithm



IV. Dense Communities: g-dense

• The density of a graph  defines how close a graph is to a 
clique

• A subgraph !(#, %) is a g-dense (or quasi-clique) if

• A 1-dense graph is a clique
• We can find quasi-cliques using the brute force algorithm 

discussed previously, but there are more efficient methods.



Finding Maximal g-dense Quasi-Cliques

We can use a two-step procedure consisting of “local search” and 
“heuristic pruning”

Local search
• Sample a subgraph,  and find a maximal g-dense quasi-clique 

• A greedy approach is to expand a quasi-clique by all of its high-degree 
neighbors until the density drops below g

Heuristic pruning
• For a g-dense quasi-clique of size k, we recursively remove nodes 

with degree less than g k and incident edges
• We can start from low-degree nodes and recursively remove all nodes with 

degree less that g k



V. Hierarchical Communities

• Previous methods consider communities at a single 
level
– Communities may have hierarchies. 

• Each community can have sub/super communities. 

– Hierarchical clustering deals with this scenario and 
generates community hierarchies.

• Initially ! members are considered as either 1 or !
communities in hierarchical clustering. These 
communities are gradually 
– merged (agglomerative hierarchical clustering) or 
– split (divisive hierarchical clustering)



Hierarchical Community Detection

• Goal: build a hierarchical structure of communities 
based on network topology

• Allow the analysis of a network at different 
resolutions

• Representative approaches: 
– Divisive Hierarchical Clustering
– Agglomerative Hierarchical clustering



Divisive Hierarchical Clustering

• Divisive clustering
– Partition nodes into several sets
– Each set is further divided into smaller ones
– Network-centric partition can be applied for the partition

• One particular example:

Girvan-Newman Algorithm: recursively remove the “weakest” 
links within a “community”

– Find the edge with the weakest link
– Remove the edge and update the corresponding strength of each edge

• Recursively apply the above two steps until a network is 
discomposed into a desired number of connected 
components.

• Each component forms a community 



Edge Betweenness

• To determine weakest links, the algorithm uses edge 
betweenness.

Edge betweenness is the number of shortest paths that 
pass along with the edge

• Edge betweenness measures the “bridgeness” of an 
edge between two communities

• The edge with high betweenness tends to be the bridge 
between two communities. 



Edge Betweenness: Example

The edge betweenness of !(1, 2) is 6/
2 + 1 = 4, as all the shortest paths 
from 2 to {4, 5, 6, 7, 8, 9} have to 
either pass !(1, 2) or !(2, 3), and 
!(1,2) is the shortest path between 1
and 2



The Girvan-Newman Algorithm

1. Calculate edge betweenness for all edges 
in the graph.

2. Remove the edge with the highest 
betweenness.

3. Recalculate betweenness for all edges 
affected by the edge removal.

4. Repeat until all edges are removed.



Edge Betweenness Divisive Clustering: Example

the first edge that needs to be removed is 
e(4, 5) ( or e(4, 6) )

Initial betweenness value

By removing e(4, 5), we compute the edge 
betweenness once again; this time, e(4, 6) has 
the highest betweenness value: 20.

This is because all shortest paths between nodes 
{1,2,3,4} to nodes {5,6,7,8,9} must pass e(4, 6); 
therefore, it has betweenness 4×5 = 20.



Community Detection Algorithms



Community Evolution



Network and Community Evolution

• How does a network change over time?
• How does a community change over time?
• What properties do you expect to remain roughly 

constant?
• What properties do you expect to change?
• For example,
– Where do you expect new edges to form?
– Which edges do you expect to be dropped?



How Networks Evolve?



Network Growth Patterns

1. Network Segmentation

2. Graph Densification

3. Diameter Shrinkage



1. Network Segmentation

• Often, in evolving networks, segmentation takes place, 
where the large network is decomposed over time into 
three parts

1. Giant Component: As network 
connections stabilize, a giant component 
of nodes is formed, with a large 
proportion of network nodes and edges 
falling into this component.

2. Stars: These are isolated parts of the 
network that form star structures. A star 
is a tree with one internal node and n 
leaves.

3. Singletons: These are orphan nodes 
disconnected from all nodes in the 
network.



2. Graph Densification

• The density of the graph increases as the network 
grows
– The number of edges increases faster than the number of 

nodes does

• Densification exponent: 1 ≤ # ≤ 2:
– ! = 1: linear growth – constant out-degree 
– ! = 2: quadratic growth – clique

!(#) and %(#) are numbers of edges and nodes respectively at time #



Densification in Real Networks

V(t)

E(t)

1.69

Physics Citations
V(t)

E(t)

1.66

Patent Citations



3. Diameter Shrinking

• In networks diameter shrinks over time

ArXiv citation graph Affiliation Network



How Communities Evolve?



Community Evolution

• Communities also expand, shrink, or dissolve in dynamic 
networks



Community Detection in Evolving 
Networks



Extending Previous Methods

1. Take t snapshots of the network, !!,!", ⋯ , !# where 
!$ is a snapshot at time $

2. Perform a static community detection algorithm (all 
methods discussed before) on all snapshots 
independently

3. Assign community members based on communities 
found in all % time stamps. 
– E.g., Assign nodes to communities based on voting (assign 

nodes to communities they belong to the most over time)

Unstable in highly dynamic networks as community memberships are 
always changing



Evolutionary Clustering

• Assume that communities don’t change most of the 
time

• Minimize an objective function that considers
– Snapshot Cost. Communities at different times (SC)
– Temporal Cost. How communities evolve (TC)

• Objective function is defined as



Evolutionary Clustering

• If we use spectral clustering for each snapshot
• Then, !"#$!, the objective function at time $ is

• %! is the community membership matrix at $
• To define TC we can use 

• Challenges with this definition
– Assumes that we have the same number of communities at 

time ! − 1 and !
– $! is non-unique (any orthogonal transformation is still a 

solution)



Evolutionary Clustering

• We can define TC as

• Hence cost will be 



Evolutionary Clustering

• Assuming Normalized Laplacian is used

Similar to Spectral Clustering
!! can be obtained by taking the top eigenvectors of "#



Community Evaluation



Evaluating the Communities

• Evaluation with ground truth
• Evaluation without ground truth

We are given objects of two 
different kinds (+, ×) 
• The perfect community: all 

objects inside the 
community are of the same 
type



Evaluation with Ground Truth

• When ground truth is available 
– We have partial knowledge of what communities should 

look like
– We are given the correct community (clustering) 

assignments

• Measures
– Precision and Recall, or F-Measure
– Purity
– Normalized Mutual Information (NMI)



Precision and Recall

Precision = Relevant and retrievedRetrieved Recall = Relevant and retrievedRelevant

False Negative (FN) : 
• When similar members are assigned to 

different communities
• An incorrect decision

False Positive (FP) : 
• When dissimilar members are assigned 

to the same communities
• An incorrect decision

True Positive (TP) : 
• When similar members are assigned to 

the same communities
• A correct decision.

True Negative (TN) : 
• When dissimilar members are assigned 

to different communities
• A correct decision



Precision and Recall: Example



F-Measure

Either ! or " measures one aspect of the performance, 
– To integrate them into one measure, we can use the 

harmonic mean of precision of recall

For the example earlier, 

# = 2× 0.6×0.61
0.6 + 0.61 = 0.60



Purity

We can assume the majority of a community represents 
the community
– We use the label of the majority against the label of each 

member to evaluate the communities
Purity. The fraction of instances that have labels equal to 
the community’s majority label

• !: the number of  communities
• ": total number of nodes, 
• #!: the set of instances with label $ in all communities
• %": the set of members in community &

Purity can be easily tampered by
• Points being singleton communities (of size 1); or by
• Very large communities



Mutual Information

• Mutual information (MI). The amount of information 
that two random variables share. 
– By knowing one of the variables, it measures the amount of 

uncertainty reduced regarding the others

• ! and " are labels and found communities; 
• #ℎ and #" are the number of data points in community ℎ and 

with label %, respectively; 
• #ℎ, " is the number of nodes in community ℎ and with label %; 

and # is the number of nodes



Normalizing Mutual Information (NMI)

• Mutual information (MI) is unbounded
• To address this issue, we can normalize MI

• How? We know that 

• !(. ) is the entropy function



Normalized Mutual Information

Normalized Mutual Information

We can also define it as 
Note that !" < 1/2(((() + ((+)



Normalized Mutual Information

• NMI values close to one indicate high similarity between 
communities found and labels

• Values close to zero indicate high dissimilarity between 
them

• where ! and ℎ are known (with labels) and found communities, respectively
• #ℎ and #" are the number of members in the community ℎ and !, respectively, 
• #ℎ, " is the number of members in community ℎ and labeled !, 
• # is the size of the dataset



Normalized Mutual Information: Example

Found communities (H)
– [1,1,1,1,1,1, 2,2,2,2,2,2,2,2]

nh
h=1 6
h=2 8

nl
! = 1 7
! = 2 7

nh,l ! = 1 ! = 2
h=1 5 1
h=2 2 6

% = 14

Actual Labels (L) 
– [2,1,1,1,1,1, 2,2,2,2,2,2,1,1]



Evaluation without Ground Truth

• Evaluation with Semantics
– A simple way of analyzing detected communities is to analyze other attributes (posts, profile 

information, content generated, etc.) of community members to see if there is a coherency 
among community members

– The coherency is often checked via human subjects.
• Or through labor markets: Amazon Mechanical Turk

– To help analyze these communities, one can use word frequencies. By generating a list of 
frequent keywords for each community, human subjects determine whether these keywords 
represent a coherent topic.

• Evaluation Using Clustering Quality Measures
– Use clustering quality measures (SSE)

– Use more than two community detection algorithms and compare the results and pick the 
algorithm with better quality measure
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