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Figure 1. Embedding the classical Mobius Ladder Graph. Given the adjacency matrix (left), the visualizations produced
by spectral embedding and spring embedding (middle) do not accurately capture the graph topology. The SPE embedding
is compact and topologically correct.
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Figure 2. Classical graphs embedded with spectral embedding (above), and SPE w/ kNN (below). Eigenspectra are shown
to the right. SPE finds a small number of dimensions that highlight many of the symmetries of these graphs.
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Figure 4. Two comparisons of molecule embeddings (top row and bottom). The SPE w/kNN embedding (right) more
closely resembles the true physical embedding of the molecule (left), despite being given only connectivity information.
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Figure 2: Two-dimensional embeddings of the Karate graph using DeepWalk and several early
dimension reduction techniques. The input is the adjacency matrix for DeepWalk and SVD, and
the geodesic matrix for the other four methods.
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Figure 3: A paradigm for Deep Learning On Graphs with DeepWalk’s design choice for each building
block.
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e Definition 1 (graph) A simple undirected graph G = (V, E) is a collection V' of n vertices
v1, V2, -+, U, together with a set E of edges, which are unordered pairs of the vertices. In
other words, the edges in an undirected graph have no orientation.

The adjacency matrix A of G is an n x n matrix where A;; = 1 if there is an edge between
v; and v;, and A;; = 0 otherwise. Unless otherwise stated, we use both graph and network
to refer to a simple undirected graph.

e Definition 2 (network embedding) For a given a network GG, a network embedding is a
mapping function ® : V — RIVI*? where d <« |V|. This mapping ® defines the latent
representation (or embedding) of each node v € V. Also, we use ®(v) to denote the embedding
vector for node v.

e Definition 3 (directed graph) A directed graph G = (V, F) is a collection V' of n vertices
v1, Vg, - - -, Uy, together with a set E of edges, which are ordered pairs of the vertices. The only
difference between a directed graph and an undirected graph is that the edges in a directed
graph have orientation.

e Definition 4 (heterogeneous network) A heterogeneous network is a network G = (V, F)
with multiple types of nodes or multiple types of edges. Formally, GG is associated with a node
type mapping f, : v = O,Vv € V and an edge type mapping f. : ¢ — Q,Ve € E, where O is
the set of all node types and () is the set of all edge types.

v i v s LR N

Definition 5 (signed graph) A signed graph is a graph where each edge ¢ € F is associated
with a weight w(e) € {—1,1}. An edge with weight of 1 denotes a positive link between nodes,
whereas an edge with weight of -1 denotes a negative link. Signed graphs can be used to reflect
agreement or trust.
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Algorithm 1 DeepWalk(G, w, d, ~, t)

Input: network G(V, E)
window size w
embedding size d
walks per vertex ~
walk length ¢
Output: matrix of vertex representations ® €
1: Initialization: Sample ® from Y!V/*4
2: Build a binary Tree T from V'
3: for 2 =0 to v do
4: O = Shuffie(V)
5. for each v; € O do
6: Wy, = RandomW alk(G, v;.t)
7: SkipGram(®, W,,, w)
8
9

RIVIxd

end for
- end for
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Method Source of Context Nodes Embedding Learning Method
DeepWalk [33] Truncated Random Walks Skip-gram with Hierarchical Softmax
LINE [41] 1-hop and 2-hop Neighbors Skip-gram with Negative Sampling
Node2vec [21] Biased Truncated Random Walks Skip-gram with Negative Sampling
Walklets [34] A where i =1,2,--- .,k Skip-gram with Hierarchical Softmax
GraRep [5] A where i =1,2,---,k Matrix Factorization
GraphAttention [2] A’ wherei=1,2,---,k Graph Likelihood

SDNE [48] 1-hop and 2-hop Neighbors Deep Autoencoder

DNGR [6] Random surfing Stacked Denoising Autoencoder
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Figure 5: Depiction of the edge representation method in [1]. On the left: a graph, showing a
random walk in dotted-red, where nodes u,v are close in the walk (i.e. within a configurable
context window parameter). Their method accesses the trainable embeddings Y, and Y, for the
nodes and feed them as input to Deep Neural Network (DNN) f. The DNN outputs manifold
coordinates f(Y,) and f(Y,) for nodes v and v, respectively. A low-rank asymmetric projection
transforms f(Y,) and f(Y,) to their source and destination representations, which are used by ¢ to
represent an edge.

=
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[1] Sami Abu-El-Haija, Bryan Perozzi, and Rami Al-Rfou. Learning edge representations via
low-rank asymmetric projections. CIKM 17, 2017.
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Figure 6: Comparison of two-dimensional embeddings from LINE and HARP, for two distinct
graphs. Observe how HARP’s embedding better preserves the higher order structure of a ring and

a plane.
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5.1 Knowledge Representation

The problem of knowledge representation is concerned with encoding facts about the world using
short sentences (or tuples) composed of subjects, predicates, and objects. While it can be viewed
as strictly as a heterogeneous network, it is an important enough application area to mention here
in its own right:

e GenVector [58] studies the problem of learning social knowledge graphs, where the goal is to
connect online social networks to knowledge bases. Their multi-modal Bayesian embedding
model utilizes DeepWalk for generating user representations in social networks.

e RDF2Vec [38] is an approach for learning latent entity representations in Resource Description
Framework (RDF) graphs. RDF2Vec first converts RDF graphs into sequences of graph
random walks and Weisfeiler-Lehman graph kernels, and then adopt CBOW and Skip-gram

models on the sequences to build entity representations.
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5.2 Recommender Systems

Another branch of work attempts to incorporate network embeddings into recommender systems.
Naturally, the interactions between users, users’ queries and items altogether form a heterogeneous
network which encodes the latent preferences of users over items. Network embedding on such
interaction graphs could serve as an enhancement to recommender systems.

e Chen et al. [8] exploit the usage of social listening graph to enhance music recommendation
models. They utilize DeepWalk to learn latent node representations in the social listening
graph, and incorporate these latent representations into factorization machines.

e Chen et al. [9] propose Heterogeneous Preference Embedding to embed user preference and
query intention into low-dimensional vector space. With both user preference embedding and
query embedding available, recommendations can be made based on the similarity between

items and queries.
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5.3 Natural Language Processing

LL

State-of-the-art network embedding methods are mostly inspired by advances in the field of natural
language processing, especially neural language models. At the same time, network embedding
methods also lead to better modeling of human language.

e PLE [37] studies the problem of label noise reduction in entity typing. Their model jointly
learns the representations of entity mentions, text features and entity types in the same
feature space. These representations are further used to estimate the type-path for each
training example.

e CANE [45] is a context-aware network embedding framework. They argue that one node may
exhibit different properties when interacting with different neighbors, thus its embedding with
respect to these neighbors should be different. CANE achieves this goal by employing mutual
attention mechanism.

e Fang et al. [18] propose a community-based question answering (cQA) framework which
leverages the social interactions in the community for better question-answering matching.
Their framework treats users, questions and answers and the interactions between them as a
heterogeneous network and trains a deep neural network on random walks in the network.

e Zhao et al. [65] study the problem of expert finding in community-based question answering
(cQA) site. Their method adopts the random-walk method in DeepWalk for embedding social
relations between users and RNNs for modeling users’ relative quality rank to questions.

& ranrwxy



5.4 Social Network Analysis

Social networks are prevailing in the real world, and it is not suprising that network embedding
methods have become popular in social network analysis. Network embeddings on social network
have prove to be powerful features for a wide spectrum of applications, leading to improved per-
formance on a lot of downstream tasks.

e Perozzi et al. [35] study the problem of predicting the exact age of users in social networks.
They learn the user representations in social networks with DeepWalk, and adopts linear
regression on these user representations for age prediction.

e Yang et al. [56] propose a neural network model for modeling social networks and mobile
trajectories simultaneously. They adopt DeepWalk to generate node embeddings in social
networks and the RNN and GRU models for generating mobile trajectories.

e Dallmann et al. [16] show that by learning Wikipedia page representations from both the
Wikipedia link network and Wikipedia click stream network with DeepWalk, they can obtain
concept embeddings of higher quality compared to counting-based methods on the Wikipedia
networks.

e Liu et al. [28] propose Input-output Network Embedding (IONE), which use network embed-
dings to align users across different social networks. IONE achieves this by preserving the
proximity of users with similar followers and followees in a common embedding space.

e Chen and Skiena [14] demonstrate the efficacy of network embedding methods in measuring
similarity between historical figures. They construct a network between historical figures
from the interlinks between their Wikipedia pages, and use DeepWalk to obtain vector rep-
resentations of historical figures. It is shown that the similarity between the DeepWalk
representations of historical figures can be used as an effctive decent similarity measurement.
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5.5 Other Applications

e Geng et al. [19] and Zhang et al. [62] develop deep neural network models which learns dis-
tributed representations of both users and images from an user-image co-occurrence network.
The representation learning process in the network is analogous to that of DeepWalk [33], ex-
cept that they also incorporate image features extracted with a DCNN into the optimization
process.

e Wu et al. [52] treat the click data collected from users’ searching behavior in image search
engines as a heterogeneous graph. The nodes in the click graph are text queries and images
returned as search results, while the edges indicates the click count of an image given a search
query. By proposing a neural network model based on truncated random walks, their method
learns multimodal representations of text and images, which are shown to boost cross-modal
retrieval performance on unseen queries or images.

e Zhang et al. [63] apply DeepWalk to large-scale social image-tag collections to learn both
image features and word features in a unified embedding space.
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6 Conclusions and Future Directions

Network embedding is an exciting and rapidly growing research area which attracts researchers from
various communities, especially data mining, machine learning and natural language processing.
While most work concerned about general methods for network embedding, we argue that the
applications of network embedding is even more underresearched. We anticipate a large body of
work on additional applications of network embeddings, such as improving the performance of
natural language processing and information retrieval models, mining biology network and social
networks, to name a few.

Also, much work has been done for graphs which possess different properties and from different
domains. In terms of graph properties, various methods are proposed for directed graphs, signed
graphs, heterogeneous graphs and attributed graphs. In terms of application domains, network
embedding methods are applied to a wide spectrum of graphs including knowledge graphs, biology
graphs and social networks. However, doubtlessly much more work can be done on this front by
exploiting the unique characteristics of these graphs.
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6.1 The search for the right context

Inspired by the two-phase network embedding learning framework presented in DeepWalk, various
strategies have been proposed for searching for the right context, as discussed in Table 1. However,
most of these strategies relies on a rigid definition of context nodes identical for all networks, which
is not desirable.

Under this background, there is much effort recently on unifying different network embedding
under a general framework [13, 36]. GEM-D [13] decomposes graph embedding algorithms into
three building blocks: node proximity function, warping function and loss function. They show
that algorithms such as Laplacian Eigenvectors, DeepWalk, LINE, and node2vec can all be unified
under this framework. By testing different design choices for each building block on real-world
graphs, they pick the triple which works the best empirically: the combination of the finite-step
transition matrix, exponential warping function and warped Frobenius norm loss. However, such
design decisions are purely made based on models’ empirical performance on a limited number of
networks, which may not work well for all networks.

A promising approach is the attention model recently proposed in GraphAttention[2]. By
parameterizing the attention over the power series of the transition matrix, GraphAttention auto-
matically learns different attention parameters for different networks.

6.2 Improved Losses / Optimization Models

Another issue with the neural embedding methods is their dependence upon general loss functions
and optimization models, such as Skip-gram. These optimization goals and models are not tuned
for any particular task. As a result, though the learned network embeddings have been proven to
achieve competitive performance on a variety of tasks such as node classification and link prediction,
they are suboptimal when compared with end-to-end embeddings methods designed specifically for
a task.

Thus, another future direction for network embedding algorithms is to design loss functions
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Structure and property preserving network embedding

Methods

Source code

DeepWalk (Perozzi, Al-Rfou, and Skiena 2014)
LINE (Tang et al. 2015)
GraRep (Cao, Lu, and Xu 2015)

SDNE (Wang, Cui, and Zhu 2016)
Node2vec (Grover and Leskovec 2016)
DNGR (Cao, Lu, and Xu 2016)
M-NMF (Wang et al. 2017b)

GED (Chen et al. 2017)

Ou et al. (Ou et al. 2015)

HOPE (Ou et al. 2016)

https://github.com/phanein/deepwalk

https://github.com/tangjianpku/LINE

https://github.com/ShelsonCao/GraRep

http://nrl.thumedia.org/structural-deep-network—embedding
https://github.com/aditya-grover/node2vec
https://github.com/ShelsonCao/DNGR
http://nrl.thumedia.org/community-preserving-network—-embedding
https://users.ece.cmu.edu/~sihengc/publications.html
http://nrl.thumedia.org/non-transitive-hashing-with-latent-similarity-components

http://nrl.thumedia.org/asymmetric-transitivity-preserving—-graph-embedding

Network embedding with side information

Methods

Source code

MMDW (Tu et al. 2016)
TADW (Yang et al. 2015)
TriDNR (Pan et al. 2016)

https://github.com/thunlp/mmdw
https://github.com/thunlp/tadw
https://github.com/shiruipan/TriDNR

Advanced information preserving network embedding

Methods

Source code

Information diffusion (Bourigault et al. 2014)
Cascade prediction (Li et al. 2017)
Anomaly detection (Hu et al. 2016)

Collaboration prediction (Chen and Sun 2017)

https://github.com/ludc/social_network_diffusion_embeddings
https://github.com/chengli-um/DeepCas
https://github.com/hurenjun/EmbeddingAnomalyDetection
https://github.com/chentingpc/GuidedHeteEmbedding
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(@) DNE (b) LINE (c) DespWalk (d) GraRep (e) LE
Figure 15: Network visualization of 20-NewsGroup by different network embedding algorithms, 1.e., SDNE (Wang, Cui,

and Zhu 2016), LINE (Tang et al. 2015), DeepWalk (Perozzi, Al-Rfou, and Skiena 2014), GraRep (Cao, Lu, and Xu 2015),
LE (Belkin and Niyogi 2003). Image extracted from SDNE (Wang, Cui, and Zhu 2016).
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(a) Random walk generation.
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(b) Representation mapping.
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(c) Hierarchical Softmax.
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e Softmax functions

* Distributional semantics

e Word2vec
— CBOW
— Skip-gram
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* Representation learning

— Using machine learning techniques to derive data
representation

* Distributed representation

— Different from one-hot representation, it uses dense
vectors to represent data points

* Embedding

— Mapping information entities into a low-dimensional
space



Softmax K X

Input:[1, 2, 3, 4, 1, 2, 3],
Output:[0.024, 0.064, 0.175, 0.475, 0.024, 0.064, 0.175]

[0.1,0.2,0.3, 0.4, 0.1, 0.2, 0.3] (which sums to 1.6) the
softmax would be [0.125, 0.138, 0.153, 0.169, 0.125, 0.138,
0.153].

in fact, de-emphasizes the maximum value (note that 0.169 is

not only less than 0.475, it is also less than the initial
proportion of 0.4/1.6=0.25).

>>> import numpy as np

>>> z =[1.0, 2.0, 3.0, 4.0, 1.0, 2.0, 3.0]

>>> softmax = lambda z:np.exp(z)/np.sum(np.exp(z))

>>> softmax(z)

array([0.02364054, 0.06426166, 0.1746813 , 0.474833 , 0.02364054,
0.06426166, 0.1746813 1)
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